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ABSTRACT

In recent years, nonnegative matrix factorization (NMF) with
volume regularization has been shown to be a powerful iden-
tifiable model; for example for hyperspectral unmixing, docu-
ment classification, community detection and hidden Markov
models. In this paper, we show that minimum-volume NMF
(min-vol NMF) can also be used when the basis matrix is rank
deficient, which is a reasonable scenario for some real-world
NMF problems (e.g., for unmixing multispectral images). We
propose an alternating fast projected gradient method for min-
vol NMF and illustrate its use on rank-deficient NMF prob-
lems; namely a synthetic data set and a multispectral image.

Index Terms— nonnegative matrix factorization, mini-
mum volume, identifiability, rank deficiency

1. INTRODUCTION

Given a nonnegative matrix X € R!"™" and a factorization
rank 7, nonnegative matrix factorization (NMF) requires to
find two nonnegative matrices W € Rl"*" and H € R*"
such that X ~ W H. For simplicity, we will use the Frobe-
nius norm, which is arguably the most widely used, to assess
the error of an NMF solution and consider the following opti-
mization problem

min | X —WH||%st. W >0and H > 0.
WeRmxr,HeR'r‘Xn

NMF is in most cases ill-posed because the optimal solution
is not unique. In order to make the solution of the above prob-
lem unique (up to permutation and scaling of the columns of
W and rows of H) hence making the problem well-posed and
the parameters (W, H) of the problem identifiable, a key idea
is to look for a solution W with minimum volume; see [1] and
the references therein. A possible formulation for minimum-
volume NMF (min-vol NMF) is as follows

i X — WHI|% + Avol(W 1
WZO,HT{:I}BeA'erj|| HF+ VO( )7 ( )

where A" = {z € R", | >°, x; < 1}, A is a penalty parame-

ter, and vol(W) is a function that measures the volume of the
columns of W. Note that H needs to be normalized otherwise
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W would go to zero since WH = (¢W)(H/c) for any ¢ > 0.
In this paper, we will use vol(W) = logdet(WTW + §I),
where [ is the identity matrix of appropriate dimensions. The
reason for using such a measure is that y/det(WTW)/r! is
the volume of the convex hull of the columns of W and the
origin. Under some appropriate conditions on X = WH,
this model will provably recover the true underlying (W, H)
that generated X. These recovery conditions require that the
columns of X are sufficiently well spread in the convex hull
generated by the columns of W [2, 3, 4]; this is the so-called
sufficiently scattered condition. In particular, data points need
to be located on the facets of this convex hull hence H needs
to be sufficiently sparse. A few remarks are in order:

e The ideas behind min-vol NMF have been introduced in
the hyperspectral image community and date back from the
paper [5]; see also the discussions in [6, 1].

e As far as we know, these theoretical results only apply in
noiseless conditions hence robustness to noise of model (1)
still needs to be rigorously analyzed (this is a very promising
but difficult direction of further research).

e The sufficiently scattered condition is a generalization of
the separability condition which requires W = X (:, K) for
some index set IC of size r. Separability makes the NMF
problem easily solvable, and efficient and robust algorithms
exist; see, e.g., [7, 6, 8] and the references therein. Note that
although min-vol NMF guarantees identifiability, the corre-
sponding optimization problem (1) is still hard to solve in
general; as the original NMF problem [9].

Another key assumption that is used in min-vol NMF is
that the basis matrix W is full rank, that is, rank(W) = r;
otherwise det(WTW) = 0. However, there are situations
when the matrix W is not full rank: this happens in particular
when rank(X) # rank,(X) where rank (X) is the non-
negative rank of X which is the smallest r such that X has
an exact NMF decomposition (that is, X = W H). Here is a
simple example:
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for which rank(X) = 3 < rank, (X) = 4. The columns of
the matrix X are the vertices of a square in a 2-dimensional
subspace; see Fig. 2 for an illustration. A practical situation
where this could happen is in multispectral imaging. Let us
construct the matrix X such that each column X (:,j) > 0



is the spectral signature of a pixel. Then, under the linear
mixing model, each column of X is the nonnegative linear
combination of the spectral signatures of the constitutive ma-
terials present in the image, referred to as endmembers: we
have X (:,7) = >, W(:,k)H(k, j), where W (:, k) is the
spectral signature of the kth endmember, and H (k, j) is the
abundance of the kth endmember in the jth pixel; see [6]
for more details. For multispectral images, the number of
materials within the scene being imaged can be larger than
the number of spectral bands meaning that » > m hence
rank(W) <m < r.

In this paper, we focus on the min-vol NMF formulation
in the rank-deficient scenario, that is, when rank(W) < r.
The main contribution of this paper is three-fold: (i) We ex-
plain why min-vol NMF (1) can be used meaningfully when
the basis matrix W is not full rank. This is, as far as we know,
the first time this observation is made in the literature. (ii) We
propose an algorithm based on alternating projected fast gra-
dient method to tackle this problem. (iii) We illustrate our
results on a synthetic data set and a multispectral image.

2. MIN-VOL NMF IN THE RANK-DEFICIENT CASE

Let us discuss the min-vol NMF model we consider in this
paper, namely,
min || X =W H||%4Xlogdet(WTW+41I), (3)
W>0,H(:,j)EAT V)
which has three key ingredients: the choice of the volume
regularizer, that is, logdet(WTW +1), the parameters § and
A. They are discussed in the next three paragraphs.
Choice of the volume regularizer Most functions used
to minimize the volume of the columns of W are based
on the Gram matrix WX W; in particular, det(W7?W) and
logdet(WTW + §I) for some § > 0 are the most widely
used measures; see, e.g., [10, 11]. Note that det(WTW) =
I7_,02(W), hence the log term allows to weight down
large singular values and has been observed to work bet-
ter in practice; see, e.g., [12]. When W is rank deficient
(that is, rank(W) < r), some singular values of W are
equal to zero hence det(WTW) = 0. Therefore, the func-
tion det(WT W) cannot distinguish between different rank-
deficient solutions!. However, we have logdet(WTW + §1)
=>"_,log(c?(W) + §). Hence if W has one (or more)
singular value equal to zero, this measure still makes sense:
among two rank-deficient solutions belonging to the same
low-dimensional subspace, minimizing logdet(W W + §1)
will favor a solution whose convex hull has a smaller volume
within that subspace since decreasing the non-zero singular
values of (WTW + §I) will decrease logdet(WTW + 61).
In mathematical terms, let W € R™*" belong to a k-
dimensional subspace with k& < r so that W = US where

1Of course, one could also use the measure det(WTW + §I) mean-
ingfully in the rank-deficient case. However, it would be numerically more
challenging since for each singular value of W equal to zero, the objective is
multiplied by § which should be chosen relatively small.

U € R™** is an orthogonal basis of that subspace and S €
R**" are the coordinates of the columns of TV in that sub-
space. Then, logdet(WTW +61) = 2% log(02(S) +6) +
(r — k)log(d). The min-vol criterion logdet(WZW + 41)
with 6 > 0 is therefore meaningful even when W does not
have rank 7.

Choice of § The function logdet(W T W +§1) which is equal
to >.i_, log(cZ(W) + §) is a non-convex surrogate for the
£y norm of the vector of singular values of W (up to con-
stants factors), that is, of rank(W) [13, 14]. It is sharper than
the ¢; norm of the vector of singular values (that is, the nu-
clear norm) for § sufficiently small; see Fig. 1. Therefore, if
one wants to promote rank-deficient solutions, d should not
be chosen too large, say 6 < 0.1. Moreover, § should not
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Fig. 1. Function for different values of ¢, /1

be chosen too small otherwise WW7T + 61 might be badly
conditioned which makes the optimization problem harder to
solve (see Section 3) —also, this could give too much impor-
tance to zero singular values which might not be desirable.
Therefore, in practice, we recommend to use a value of § be-
tween 0.1 and 1073, We will use § = 0.1 in this paper. Note
that in previous works, § was chosen very small (e.g., 1078
in [11]) which, as explained above, is not a desirable choice,
at least in the rank-deficient case. Even in the full-rank case,
we argue that choosing ¢ too small is also not desirable since
it promotes rank-deficient solutions.

Choice of A The choice of ¢ will influence the choice of A.
In fact, the smaller J, the larger | logdet(9)|, hence to balance
the two terms in the objective (3), A should be smaller. For the
practical implementation, we will initialize W) = X(:, K)
where /C is computed with the successive nonnegative pro-
jection algorithm (SNPA) that can handle the rank-deficient
separable NMF problem [15]. Note that SNPA also provides
the matrix H(®) so as to minimize || X — W) H(©)||2, while
H©)(:,§) € A" for all 5. Finally, we will choose

i X - WO HO ’
| logdet (WO W ©) 4 57)]

A

where we recommend to choose A between 1 and 10~3 de-
pending on the noise level (the noisier the input matrix, the
larger A should be).



3. ALGORITHM FOR MIN-VOL NMF

Most algorithms for NMF optimize alternatively over W and
H, and we adopt this strategy in this paper. For the up-
date of H, we will use the projected fast gradient method
(PFGM) from [15]. Note that, as opposed to previously pro-
posed methods for min-vol NMF, we assume that the sum of
the entries of each column of H is smaller or equal to one,
not equal to one, which is more general. For the update of W,
we use a PFGM applied on an strongly convex upper approx-
imation of the objective function; similarly as done in [11]—
although in that paper, authors did not consider explicitly the
case W > 0 (W is unconstrained in their model) and did
not write down explicitly a PFGM taking advantage of strong
convexity. For the sake of completeness, we briefly recall this
approach. The following upper bound for the logdet term
holds: for any @ > 0 and S > 0, we have

logdet(Q) < g(Q, S) = logdet(S) + trace (S~1(Q — )
= trace (S™'Q) + logdet(S) — r.

This follows from the concavity of logdet(.) as g(@, S) is
the first-order Taylor approximation of logdet(Q) around
S—it has also been used for example in [16]. This gives
logdet(WTW + 61) < trace(YWTW) + logdet(Y ~1) — r
forany Wandany Y = (Z7Z +6I)~! with 6 > 0. Plugging
this in the original objective function, and denoting w! the
ith row of matrix W and (., .) is the Frobenius inner product
of two matrices, we obtain

UW) =||X — WH||% + Aogdet(WTW + 1)
= |IXII% - 2(xXH", W) + (W'W,HHT)
+ Mogdet(WTW +61)
< (WTW,HHT +\Y) —2(C,W) +b

n 1 B
= 22 (zwiTAwi - c;fpwi> +b=LW),
i=1

where Y = (Z1Z +6I)~' and A = HH” + \Y are pos-
itive definite for 6, A > 0, C = XH7, and b is a constant
independent of W. Note that /(W) = (W) for Z = W.
Minimizing the upper bound ¢(W) of £(W) requires to solve
m independent strongly convex optimization problems with

Hessian matrix A. Using PFGM on this problem, we obtain
1—vVkr—1!

—1

a linear convergence method with rate where & is

the condition number of A [17]. Note that the subproblem in
variable H is not strongly convex when W is rank deficient in
which case PFGM converges sublinearly, in O(1/k?) where
k is the iteration number. In any case, PFGM is an optimal
first-order method in both cases [17], that is, no first-order
method can have a faster convergence rate. When W is rank
deficient, we have 3 < L = Apax(A) < ||H||3 + 3, where
L is the largest eigenvalue of A. This shows the importance
of not choosing § too small, since the smaller §, the larger the
conditioning of A hence the slower will be the PFGM. Note

that L is the Lipschitz constant of the gradient of the objective
function and controls the stepsize which is equal to 1/L. Our
proposed algorithm is summarized in Alg. 1. We will use 10
inner iterations for the PFGM on W and H.

Algorithm 1 Min-vol NMF using alternating PFGM

Require: Input matrix X € R"™*", the factorization rank r,

6>0, > 0, number of iterations maxiter.
Ensure: (W, H) is an approximate solution of (3).

1: Initialize (W, H) using SNPA [15].

2: Let A\ = 5\%

3: for k =1,2,..., maxiter do

4: % Update W

5: Let A= HHT+A\WTW+6I)"tandC = XHT.
6: Perform a few steps of PFGM on the prob-

lem miny>o 2(UTU, A)—(U,C), with initializa-
tion U = W. Set W as last iterate.

7: % Update H

8: Perform a few steps of PFGM on the problem
minH(:’j)eAr Vi ||X — WHHQF as in [15]

9: end for

4. NUMERICAL EXPERIMENTS

We now apply our method on a synthetic and a real-world data
set. All tests are preformed using Matlab R2015a on a laptop
Intel CORE i7-7500U CPU @2.9GHz 24GB RAM. The code
is available from http://bit.ly/minvolNMF.

Synthetic data set. Let us construct the matrix X € R**500
as follows: W is taken as the matrix from (2) so that
rank(W) = 3 < r = 4, and each column of H is distributed
using the Dirichlet distribution of parameter (0.1,...,0.1).
Each column of H with an entry larger 0.8 is resampled as
long as this condition does not hold. This guarantees that no
data point is close to a column of W (this is sometimes re-
ferred to as the purity index). Fig. 2 illustrates this geometric
problem. As observed on Fig. 2, Alg. 1 is able to perfectly
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Fig. 2. Synthetic data set and recovery. (Only the first three
entries of each four-dimensional vector are displayed.)

recover the true columns of W. For this experiment, we



use A = 0.01. Fig. 3 illustrates the same experiment where
noise is added to X = max(0, WH + N) where N = ¢
randn(m,n) in Matlab notation (i.i.d. Gaussian distribution of
mean zero and standard deviation €). Note that the average of
the entries of X is 0.5 (each column is a linear combination
of the columns of W, with weights summing to one). Fig. 3
displays the average over 20 randomly generated matrices X

of the relative error d(W, W) = % where W is the

solution computed by Alg. 1 depending on the noise level
€. This illustrates that min-vol NMF is robust against noise
since the d(W, W) is smaller than 1% for € < 1%.
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Fig. 3. Evolution of the recovery of the true W depending on
the noise NV = € rand(m,n) using Alg. 1 (A = 0.01, 6 = 0.1,
maxiter = 100).

Multispectral image. The San Diego airport is a HYDICE
hyperspectral image (HSI) containing 158 clean bands, and
400 x 400 pixels for each spectral image; see, e.g., [18].
There are mainly three types of materials: road surfaces,
roofs and vegetation (trees and grass). The image can be
well approximated using r=8. Since we are interested in
the case rank(W)<r, we select m=5 spectral band using
the successive projection algorithm [19] (this is essentially
Gram-Schmidt with column pivoting) applied on X 7. This
provides bands that are representative: the selected bands are
4,32, 116, 128, 150. Hence, we are factoring a 5-by-160000
matrix using a r=8. Note that we have removed outlying
pixels (some spectra contain large negative entries while oth-
ers have a norm order of magnitude larger than most pixels).
Fig. 4 displays the abundance maps extracted (that is, the
rows of matrix H): they correspond to meaningful locations
of materials. Here we have used A=0.1 and 1000 iterations.
From the initial solution provided by SNPA, min-vol NMF
is able to reduce the error || X — W H||Fr by a factor of 11.7

while the term logdet(W W + §1) only increases by a factor
of 1.06. The final relative error is ”XH_X%”F = 0.2%.

5. CONCLUSION

In this paper, we have shown that min-vol NMF can be used
meaningfully for rank-deficient NMF’s. We have provided a
simple algorithm to tackle this problem and have illustrated
the behaviour of the method on synthetic and real-world data
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Fig. 4. Abundance maps extract by min-vol NMF using only
five bands of the San Diego airport HSI. From left to right, top
to bottom: vegetation (grass and trees), three different types
of roof tops, four different types of road surfaces.

sets. This work is only preliminary and many important ques-
tions remain open; in particular

e Under which conditions can we prove the identifiability of
min-vol NMF in the rank-deficient case (as done in [2, 3] for
the full-rank case)? Intuitively, it seems that a condition sim-
ilar to the sufficiently-scattered condition would be sufficient
but this has to be analysed thoroughly.

e Can we prove robustness to noise of such techniques? (The
question is also open for the full-rank case.)

e Can we design faster and more robust algorithms? And
algorithms taking advantage of the fact that the solution is
rank-deficient?
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